Algebra MATH-310

All information on Moodle

Anna Lachowska

anna.lachowska@epfl.ch

September 9, 2024

Organization

Lectures: Mondays 15:15 - 17:00 CM 1 1, live streaming in CM 1 4

Exercises: Mondays 17:15 - 19:00, CM 1 1 and CM 14.

- + Lectures live streamed and video recorded on Zoom, link on Moodle
- + Polls on Zoom during class
- + Ed Discussion: questions at any time
- + Old video recordings online, link on Moodle
- + Polycopie written by Joachim Favre, available on Moodle
- + My typed course notes on Moodle
- + Problem sets and solutions on Moodle

One graded written assignment in November: 15% of the final grade Written exam in January: 85% of the final grade

Assistants

Damien Bridel Kasimir De Guilhem De Lataillade Fabien Donnet-Monay Mehdi Jelassi Vladislav Shashkov (DA)

Plan of the course

- Integers: 1 lecture
- Groups: 6 lectures
- Rings and fields: 5 lectures
- Review: 1 lecture

Today: Integers

- (a) Induction principle and well-ordering principle \lor
- (b) Prime factorization. Uniqueness.
- (c) Euclidean division. Bézout's theorem
- (d) Euler's totient function

Integers

Question

What is the most basic property of natural numbers?

$$\mathbb{N} = \{0,1,2,\ldots\}$$

Induction

Question

What is the most basic property of natural numbers?

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

Induction principle

Let $S \subset \mathbb{N}$ such that

- $(1) \ 0 \in S$;
- (2) If $n \in S$, then $n + 1 \in S$.

Then $S = \mathbb{N}$.

Induction vs. Strong Induction

Induction principle

Let $S \subset \mathbb{N}$ such that

- $(1) \ 0 \in S$;
- (2) If $n \in S$, then $n + 1 \in S$.

Then $S = \mathbb{N}$.

Strong Induction principle

Let $S \subset \mathbb{N}$ such that

- $(1) \ 0 \in S$;
- (2) If $\{0, 1, ..., n\} \subset S$, then $n + 1 \in S$.

Then $S = \mathbb{N}$.

Induction principle

Let $S \subset \mathbb{N}$ such that

- $(1) \ 0 \in S$;
- (2) If $n \in S$, then $n + 1 \in S$.

Then $S = \mathbb{N}$.

Strong Induction principle

Let $S \subset \mathbb{N}$ such that

- $(1) \ 0 \in S ;$
- (2) If $\{0, 1, ... n\} \subset S$, then $n + 1 \in S$.

Then $S = \mathbb{N}$.

Well ordering principle

Every nonempty subset of $\mathbb N$ has a least element.

Poll: which statement is the strongest? A: Induction, B: Strong induction, C: Well ordering, D: All are equivalent

Induction and Well ordering $\mathcal{IP} \rightarrow SIP$

Proposition
$$IP = SIP \stackrel{PSI}{=} WOP = PIP$$

Induction, Strong induction and Well ordering principles are equivalent.

IP => SIP
Let
$$S \subset IN$$
: $O \in S$ and if $\{0, ..., n\} \in S => n+1 \in S$
Want to show: $S = IN$ using only IP.
Let $P(n)$ be the statement: $\{0, ..., n\} \in S$
Then $P(0)$ is true; if $P(n)$ true: $\{0, ..., n\} \in S => n+1 \in S$
=> $\{0, ..., n, n+1\} \subset S => P(n+1)$ is true
=> by simple induction $P(n)$ is true $\forall n \in N$
=> $\{0, ..., n\} \subset S \quad \forall n => S = N$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

9 / 23

Induction and Well ordering

Proposition $WOP \Rightarrow IP$

Induction, Strong induction and Well ordering principles are equivalent.

Suppose
$$S \subset N : O \in S$$
, if $n \in S \Rightarrow n+1 \in S$
Let $S' = |N \setminus S|$ Suppose $S' \neq \emptyset \Rightarrow By WOP \exists k \in S'$
 $k \neq 0$ because $O \in S \Rightarrow O \notin S'$
 $\Rightarrow k = m+1 \in N$ for some $m \in N$, $m \notin S' \Rightarrow m \in S$
By Condition $m \in S \Rightarrow m+1 \in S$
 $k = m+1 \in S'$ and $m+1 \in S$
Contradiction: $S \cap S' = \emptyset$
 $\Rightarrow S' = \emptyset \Rightarrow S \Rightarrow M$
proof by "minimal criminal"

Application: prime factorization

Definition

Let $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$. If $a, b \in \mathbb{Z}$ and $a \neq 0$, we say that a divides b if there exists $c \in \mathbb{Z}$ such that b = ac.

Definition

A number $p \in \mathbb{Z}_+ = \{1, 2, \ldots\}$ is prime if p > 1 and the only divisors of p are 1 and p. Other integer numbers are composite.

Theorem

Any number n > 1 has a prime divisor.

Application: prime factorization

Theorem

Any number n > 1 has a prime divisor.

Suppose
$$S \subset N_{21}$$
 1.f. elfs in S has no prime divisor => by WOP = a minimal $k \in S$

Then $p \mid k$.

If $k = p$ is a prime => then $p \mid k$.

If $k = a \cdot b$ composite => both a and b have prime divisors; a prime => $p \mid k = a \cdot b$

=> $p \mid k = a \cdot b$

Application: prime factorization

Theorem

- (1) Any number n > 1 is a product of primes; Lexercise
- (2) prime factorization is unique.

Let
$$n = p_1 \dots p_k = q_1 \dots q_m$$
 the smallest with 2 different prime factorization => $p_i \neq q_i$.

WLOG assume $q_i > p_1$, let $t = (q_i - p_i)q_2 \dots q_m > 0$, $t < h$
 $t = q_1 \dots q_m - p_1 q_2 \dots q_m = p_1 \dots p_k - p_1 q_2 \dots q_m = p_1 (p_2 \dots p_k - q_2 \dots q_m)$
 $n = p_1 \dots p_k$

=> t has a unique prime factorization => p_i | t
 $t = (q_1 - p_1)q_2 \dots q_m => p_1 | (q_1 - p_1) => q_1 - p_1 = Sp_1$

=> $q_1 = (S+1)p_1 => q_1$ is not a prime, combradiction.

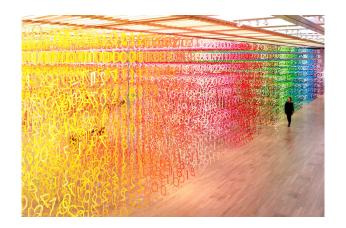
=> no such minimal n can exist

=> no such minimal n can exist

=> no such minimal n can exist

Conclusion: basic properties of \mathbb{N} :

- (1) Natural numbers are constructible by induction starting from 0;
- (2) Natural numbers > 1 admit a unique prime factorization.

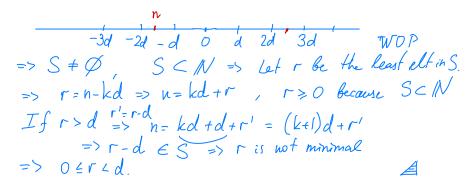


Euclidean division

Theorem

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}_+$. Then there exist two integers $q, r \in \mathbb{Z}$ such that n = qd + r and $0 \le r < d$. These q, r are unique.

Existence: WOP. Let $S = \{n - kd\}_{k \in \mathbb{Z}} \cap \mathbb{N}$.



September 8, 2024

15 / 23

Fuclidean division

Theorem

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}_+$. Then there exist two integers $q, r \in \mathbb{Z}$ such that n = qd + r and 0 < r < d. These q, r are unique.

Uniqueness: Suppose $r_1 + q_1d = r_2 + q_2d$, WLOG $q_1 > q_2$.

niqueness: Suppose
$$r_1+q_1d=r_2+q_2d$$
, WLOG $q_1>q_2$.

$$(q_1-q_2)d+\Gamma_1=\Gamma_2$$

$$\geq d$$

$$\geq d$$

$$contradiction, because $\Gamma_2.$$$

Definition

If $a, b \in \mathbb{Z}$, then $\gcd(a, b)$ is a positive integer c such that c|a and c|b, and if there is another positive integer d with this property, then d|c.

Euclidean division

Proposition

If $n, q \in \mathbb{Z}$ and $d \in \mathbb{Z}_+$ such that n = qd + r, $0 \le r < d$, then $\gcd(n, d) = \gcd(d, r)$.

c is common divisor of
$$n, d \Rightarrow c \mid r$$

C is common divisor of $d, r \Rightarrow c \mid n$
 \Rightarrow the set of common divisors of (n, d)
is equal to the set of common divisors of (r, d)

proof by staring

Use Euclidean division to find \gcd of two numbers

$$d_1 = q_1 d_2 + d_3$$

 $d_2 = q_2 d_3 + d_4$ $gcd(d_1, d_2) = gcd(d_2, d_3)$
...
 $d_{k-1} = q_{k-1} d_k + d_{k+1}$
 $d_k = q_k d_{k+1} + 0$ \Longrightarrow $d_{k+1} = gcd(d_1, d_2)$.

Example
$$gcd(336, 180)$$
 $\frac{336}{180} | 180 | 156 | 156 | 24 | 24 | 12$
 $\frac{180}{156} | 1 | \frac{156}{24} | 1 | \frac{144}{12} | 6 | \frac{24}{0} | 2$
=> $qcd(336, 180) = 12$

Applications of Euclidean division

Corollary 1

If $a, b \in \mathbb{Z}_+$, then there exist $x, y \in \mathbb{Z}$ such that gcd(a, b) = ax + by.

Run the Euclidean algorithm backwards!
$$\alpha = 336$$
, $6 = 180$
Example: $12 = 156 - 6 \cdot 24 = 156 - 6 \cdot (180 - 156) =$

$$gcd(a,6) = 7 \cdot 156 - 6 \cdot 180 = 7 \cdot (336 - 180) - 6 \cdot 180 =$$

$$= 7 \cdot 336 - 13 \cdot 180$$

Corollary 2

If $a, b \in \mathbb{Z}_+$ and $d = \gcd(a, b)$, then the equation $ax + by = c \in \mathbb{Z}$ has a solution $x, y \in \mathbb{Z}$ if and only if c is a multiple of d.

Bezout's theorem

Theorem

$$qcd(a_{i}b)=1$$

Theorem $\gcd(a,b) = 1$ Two numbers $a,b \in \mathbb{Z}_+$ are relatively prime if and only if there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

This is a particular case of Corollary 2. .

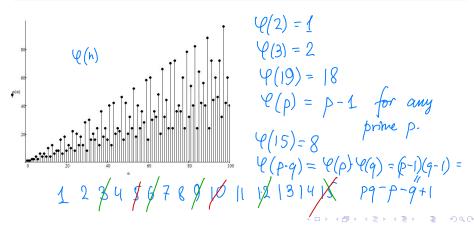
Conclusion: basic properties of \mathbb{Z} :

- (1) Euclidean algorithm can be used to find the \gcd of two integers
- (2) For two integers a, b we can find two integers x, y such that xa + yb = c if and only if c is a multiple of gcd(a, b).

Euler's totient function $\varphi(n)$

Definition

For any $n \in \mathbb{Z}_+$ the Euler's totient function $\varphi(n)$ is equal to the number of positive integers k such that $1 \le k \le n$ and $\gcd(n, k) = 1$.



A. Lachowska Algebra Lecture 1

Euler's totient function $\varphi(n)$

Let p be a prime.

Poll:
$$\varphi(p^2) =$$

A:
$$p^2 - 2p - 1$$

B:
$$(\varphi(p))^2$$

C:
$$p^2 - p$$

D:
$$p^2 - 1$$
.

1, 2...p, ...2p, ...3p, ...p(p),...,p2

1 2 3 p

=>
$$(p^2) = p^2 - p$$
. => $(p^2)^2 = (p^2)^2 = (p^2)^2 = (p^2)^2 = (p^2)^2 = (p^2)^2$
 $(pq) = (p) (p) (q) \text{ if } p \text{ and } q \text{ are disher } f \text{ primes}$

but $(p^2) \neq (p^2)^2 = (p^2)^2 = (p^2)^2$

Later: $\Psi(mn) = \Psi(m) \cdot \Psi(n) \iff \gcd(m,n) = 1$